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After this presentation you will be able to: 

 

 Define the terms pole, zero and eigenvalue as they 

pertain to transfer functions. 

 Identify the location of poles and zeros on the 

complex plane. 

 Develop transfer functions from OP AMP circuits 

using the Laplace variable.   

 Develop transfer functions of electromechanical 

systems using the Laplace variable. 

 Find the values of poles and zeros given a transfer 

function. 
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Input/output relationships for a mathematical model usually given 

by the ratio of two polynomials of the variable s. 
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Where 

All a’s and b’s are constants 

Order of numerator is less that the denominator 
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Example 

G(s) 

X(s) Y(s) 

Output 

Input 

Y(s)= G(s)∙X(s) 

Transfer function is the “gain” of the block as a function of the Laplace 

variable s. 
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Definitions: 

Poles - roots of the denominator polynomial. Values that caus transfer function 

 magnitude to go to infinity. 

Zeros - roots of the numerator  polynomial. Values that cause the transfer 

function to go to 0. 

Eigenvalues - Characteristic responses of a system.  Roots of the denominator 

 polynomial.  All eigenvalues must be negative for a system 

 transient (natural response) to decay out.  

Poles 
Zeros 
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Transfer function poles and zeros determine systems’ 

responses.  Plotted on the complex plane  (s,jw). 

Complex  roots 

appear in conjugate 

pairs 

X’s indicate pole 

location 

Circle is location of 

zero 

Closer pole is to 

imaginary axis 

slower response.  
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Example 12-1: Find the transfer function of the low pass filter shown 

below.  Draw a block diagram of the result showing the input/output 

relationship. 

Write a KVL equation around the RC loop. 
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Take Laplace Transform of the above 

equation 
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Now find the current from the above equation 
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Solve for I(s) 

Remember 
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Factor out I(s) 

Divide both sides by (R+1/Cs) 

Substitute I(s) into 

above equation 

and simplify 
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Final formula 
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Draw block diagram 

Vi(s) Vo(s) 

1RCs

1



RC is time constant of system.  

System has 1 pole at  -1/RC and no zeros. 

Larger RC gives slower response. 
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Example 12-2:  Find the transfer function of a practical 

differentiator- active high pass filter with definite low frequency 

cutoff. 

Solution Method:  Take Laplace 

transform of  components and treat 

them like impedances. 

For capacitor 
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Example 12-2 Solution (2) 
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Substitute into gain 

formula 

Simplify ratio 

Transfer Function 

Transfer function has 1 zero at s=0  (RfCs=0) and 1 pole at s=-1/RiC  

(RiCs+1=0) 
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Block diagram equivalent of OP AMP circuit 

Vi(s) Vo(s) 
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Now consider cascaded OP AMP circuits.  Similar to the 

constants used previously.  For series connected 

circuits, multiply the gains (transfer functions) .   

Note:  do not cancel common terms from numerator 

and denominator. 
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G1(s) 

R(s) X1(s) 

G2(s) 

X (s) 

Stage 1 

 

R(s)∙G1(s)=X1(s)    Equation (1) 

Stage 2 

 

X1(s)∙G2(s)=X (s)    Equation (2) 

Substitute (1) into (2) and simplify to get overall gain 

X1(s)=R(s) ∙G1(s) 

 

R(s) ∙G1(s) ∙ G2(s)=X (s)  X(s)/R(s)= G1(s) ∙ G2(s) 
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Example 12-3:  Find the transfer function of the cascaded OP AMP 

circuit shown.  Determine the number and values of the poles and 

zeros of the transfer function if they exist.  

Stage 1 

Integrator 

Circuit 

Stage 2: Practical 

Differentiator 

Circuit 
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Solution Method 

Take Laplace 

transform 

of components 

and use general 

gain formula 

Stage 1 Stage 2 

)s(Z

)s(Z

)s(V

)s(V
)s(A

i

f

i

1
1v







sC

1
)s(Z

R)s(Z

1

f

ii






sCR

1

R

sC

1

sC

sC

R

sC

1

)s(A
iii

1v















































































lesson12et438a.pptx 
16 

G2(s) was derived previously (practical differentiator) 
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Negative signs cancel 
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Overall transfer function  
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Plug in given values for the component symbols and compute 

parameters 
Rf∙C2 = 100 kW ∙0.05 mf 

Rf∙C2 =0.005 

R1∙C2 = 25 kW ∙0.05 mf 

R1∙C2 =0.001 

Ri∙C1 = 10 kW ∙0.1 mf 

Ri∙C1 =0.001 
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Final transfer function- all values included 
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Overall transfer function is the algebraic sum of the signs entering 

summing point   
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Systems with unity gain feedback 
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Systems with non-unity gain feedback 
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Equivalent block 

G(s)= forward path gain 

H(s) = feedback path gain 
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